Duke Physician Assistant Program

Creating a Trainee-Level Longitudinal Education Database: Conceptual and Methodological Considerations

Perri Morgan, PA-C, PhD Brandi Leach, PhD

Objectives

- Discuss potential uses of a longitudinal educational database.
- Describe examples of education studies using longitudinal databases.
- Summarize a conceptual approach to creating education databases.
- Identify existing sources of information for inclusion into a database.
- Describe processes associated with development and maintenance of a longitudinal database.

Why longitudinal?

- Longitudinal analysis allows analysis of changes at both the group and the student levels.
 - As educators, we are interested in changes in our students/graduates over time.
- This is the example we give our students when explaining our Education Research Database (ERD):

Cross-sectional vs. longitudinal data: An example

Anne and Sue both respond to a survey about their attitudes toward working in surgery.

(1-10 scale with 1= very unlikely and 10=very likely					
Student	1 st year response	Response at graduation			
Anne	1	10			

1

10

Sue

An example: Cross-sectional data

How likely are you to choose a career as a surgical PA? (1-10 scale with 1= very unlikely and 10=very likely					
Student	1 st year response	Response at graduation			
	1	10			
	10	1			
Mean student response	5.5	5.5			

Conclusion: Student attitudes toward working in surgery do NOT change over the course of their PA education.

An example: Longitudinal data

How likely are younger PA? (1-10 scale with likely	Absolute value of change in student response		
Student	1 st year response	Response at graduation	
Υ	1	10	9
X	10	1	9
			9 mean change

- Conclusion: Student attitudes about working in surgery change during their PA education.
- For the longitudinal analysis, we have to be able to link each student's first response to their later response.

Reasons we chose a student-level, longitudinal approach

- We want to avoid the potential fallacy of equating group changes with individual change.
- We will be able to limit some research to students/trainees with certain characteristics.
- We collect data at the individual level anyway—why not use them?

An essential question

 Will our student-level education database be used for program evaluation or for research, or both?

Research vs. Evaluation

Research

- Produces generalizable knowledge
- Uses scientific methods
- Requires human subjects review (IRB)

Evaluation

- Intent is to improve a specific program
- Findings are expected to directly impact a program and to identify potential improvements
- Geared toward program decision-making
- Sometimes does not require human subjects review (IRB)

Why might you want a longitudinal database for evaluation purposes?

- To help organize your data
- To use for program improvement
- To analyze issues specific to your students or your program
 - Ex: Does a specific admissions factor predict a specific problem in your program?
 - Ex: Does a specific educational intervention work better for a particular type of student in your program?
- You do not want to deal with human subjects review and informed consent (but we think this is a weak excuse!)

Why would you want a longitudinal database for research?

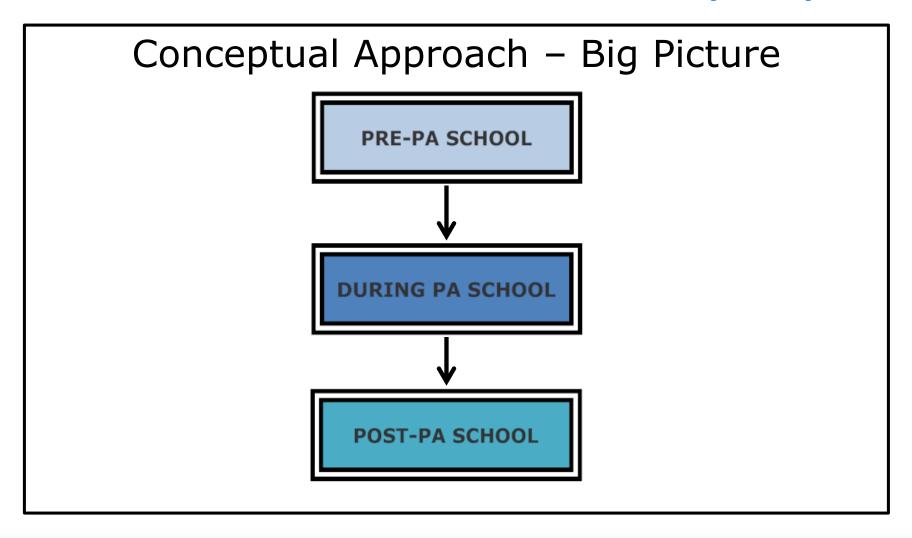
- To share your findings with other programs and the education community
- To help your faculty produce research
- To facilitate use of previously collected data into research on new questions
 - This might lead to shorter surveys and
 - This might reduce survey fatigue among your students
- You might be able to combine your program data with those of other institutions in the future

When does evaluation NOT require human subjects review?

- When the activity does not involve non-standard interventions
- The intent is to only provide information for and about the setting in which it is conducted
- The activity is part of standard operating procedures

Human subjects review: Our experience

- We have a separate protocol approved for creation of the database.
 - Each new survey that is added to the database requires IRB approval. So do alterations to existing surveys.
 - These are expedited, with 2-3-day turnaround.
- Any research using the database will require individual protocols.


Examples of education research using longitudinal databases

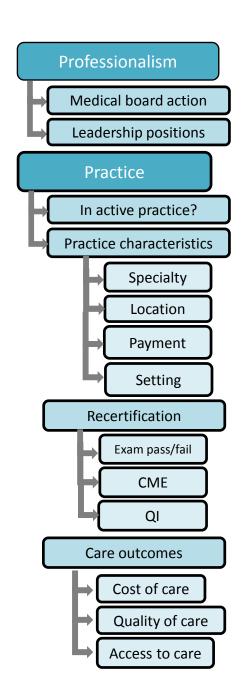
- Jefferson Medical School started a longitudinal database in 1970.
 - Over 150 articles have been published based on it.
- Papadakis MA, Teherani A, Banach MA, et al. Disciplinary action by medical boards and prior behavior in medical school. N Engl J Med. 2005;353:2673–2682.
- Tamblyn R, Abrahamowicz M, Dauphinee D, et al. Physician scores on a national clinical skills examination as predictors of complaints to medical regulatory authorities. JAMA. 2007;298:993–1001.

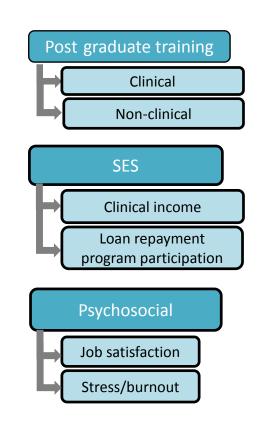
Our current project

- The Education Research Database (ERD) is a permanent database that contains extensive longitudinal student-level data from the Duke PA Program (DPAP).
- Data collection starts with the admissions process and will continue throughout DPAP graduates' professional lives.
- Supports research on PA selection, training, and practice.

Duke PA Program Education Research Database (ERD)

Acceptance (Y/N) Academics, Personal & **Professional History Admissions Data** Academics Essays References Self Reported Legal Trouble **Veteran Status** Interview Healthcare Experience Demographics **Student Debt** SES Psychosocial Family Structure Stress


Pre-PA School Data Sources


- Admissions data
- New student survey

During PA SchoolData Sources

- Midpoint student survey
 - Repeats select items from new student survey
- Academic data during PA training
- PANCE (certification exam) pass/fail
- Graduation student survey

Post-PA School Data Sources

- New graduate survey
- Practice-related data
 - Claims data
 - State medical board sanctions data

Examples of research questions with ERD

- What student characteristics predict admission into the Duke PA program?
 - Pre-PA School → PA School
- Which PA program experiences are associated with post-graduate leadership positions?
 - PA School → Post-PA School
- What PA program experiences are associated with the delivery of high-quality care?
 - PA School → Post-PA School

A PCTE longitudinal database?

- Additional post-graduation data collection could facilitate assessment of HRSA PCTE outcomes of interest including:
 - Rate of program graduates practicing in primary care or underserved areas at least 1 year after program completion
 - Type/amount of patient services provided by program graduates
 - Quality of care provided by program graduates
 - Care delivery by trainees and faculty at PCTE clinical training sites including the quality and cost of care, and patient service
- What additional variables would be required?
- What potential issues might arise?

ERD Data Points: Post-Graduation

HRSA PCTE Outcomes of Interest

Let's take a break for questions and discussion

 But hold your questions about nuts and bolts, because we will discuss them next.

Nuts and bolts

Data that are NOT included

- Data not included because anonymity is necessary
 - Student evaluations of courses
 - Other student evaluations of the program (exit survey, etc.)
- Data not included because we consider them mandatory for every student
 - Data required for reporting to HRSA for grant applications and progress reports (data for determining # of disadvantaged students, etc.)

Practical issues

- Student participation
- Obtaining informed consent
- Privacy protection
- Choosing software
- Maintenance of database
- Linking data

Student participation and retention in longitudinal research

While students are in your program

- Program leadership emphasizes the contribution that students can make to knowledge about the profession by participating
 - Reiterate importance of student contributions before each new survey
- Provide incentives, such as snacks

After students leave your program

- Identify a student to act as a "champion" for your research database after graduation
- Offer incentives for survey completion
- Share results of any research using the database with students

Informed consent

- We give a 10-minute presentation to new students about the database and distribute the consent forms electronically.
- The next day, in the classroom, staff distributes paper consent forms and collects them. Faculty are not present.
- In order to obtain application data for all applicants
 (including those not admitted), we added a one-paragraph
 consent statement to our supplemental application.

Privacy protection

- Faculty does not know which students consented to participate.
- Staff assign a database identifier to each student and keep the code with student names under lock and key.
- Faculty who wish to use the database will be issued limited datasets by staff that include only the variables required for their project.
- Even without student names, faculty could identify many students using other variables. However, this would be a breach of research ethics and would violate institutional and/or federal guidelines.

Secure storage

- Data on a protected server
- Access to identifiable data limited
 - For example, researchers are only given access to variables necessary for their project
- De-identified datasets are created for individual research projects

Choosing software

- Institutional resources
 - Any existing programs available through institution (e.g., REDCap)?
 - Support readily available?
- Interface preferences overall usability, security issues
 - Desktop-based (e.g., Microsoft Access, FileMaker Pro)
 - Server-based (e.g., MySQL)
 - Web-based (e.g., REDCap, Medrio)
- Import/export file type options (e.g., SAS, Stata, SPSS, Excel, others)
- Cost

Database software options

Software	Website	Where is database located?	Data export options	Cost
Microsoft Access	http://office.micros oft.com/en- us/access/	On user's computer	Excel, txt, Word, XML	Office 365— individual license \$70
REDCap	http://www.project- redcap.org/	On Internet; need user rights to access	Excel, PDF, SPSS, SAS, Stata, R	Institutional partnership required; no cost
Medrio	http://medrio.com/	On Internet; need user rights to access	Excel, SAS, SPSS, STATA	Free for investigator- initiated trials; \$1200/year once you hit 100k data points
StudyTrax	http://www.science trax.com/studytrax/	Hosted on own server or ScienceTrax secure servers	Excel, CSV, SAS, SPSS, Word	\$99 student license
OpenClinica	https://www.opencl inica.com/	On user's computer (after free download)	HTML, tab- delimited, Excel, SPSS	Open source; no cost
QuesGen	http://www.quesge n.com/	On Internet; need user rights to access	Stats packages and Excel	Pay as you use, with per-user, per-month charge as set-up fee

Linking data

- Format matters
- IRB issues
- Data use agreements
- Data cleaning

The future

One big database for all of our programs?

References

- Ander-Peciva, S. (2005). Construction of longitudinal databases for flexibility, transparency and longevity. International Commission for Historical Demography. Sydney, Australia.
- Chen, H. (2013). "Designing Education Lab: Evaluation vs. Research What's the Difference?" Retrieved September 20, 2014, from http://web.stanford.edu/group/design_education/wikiupload/2/27/Helen_Evaluation.pdf
- Cook, D. A., D. A. Andriole, S. J. Durning, N. K. Roberts and M. M. Triola (2010).
 "Longitudinal research databases in medical education: facilitating the study of educational outcomes over time and across institutions." Acad Med 85(8): 1340-1346.
- Ellaway, R. H., M. V. Pusic, R. M. Galbraith and T. Cameron (2014). "Developing the role of big data and analytics in health professional education." Med Teach **36**(3): 216-222.
- Gonella, J., M. Hojat and J. Veloski (2005). "Abstracts: Jefferson Longitudinal Study of Medical Education, 3rd edition [full volume]." Jefferson Longitudinal Study of Medical Education Paper 1.
- Papadakis, M. A., A. Teherani, M. A. Banach, T. R. Knettler, S. L. Rattner, D. T. Stern, J. J. Veloski and C. S. Hodgson (2005). "Disciplinary action by medical boards and prior behavior in medical school." N Engl J Med 353(25): 2673-2682.
- Tamblyn, R., M. Abrahamowicz, D. Dauphinee, E. Wenghofer, A. Jacques, D. Klass, S. Smee, D. Blackmore, N. Winslade, N. Girard, R. Du Berger, I. Bartman, D. L. Buckeridge and J. A. Hanley (2007). "Physician scores on a national clinical skills examination as predictors of complaints to medical regulatory authorities." JAMA 298(9): 993-1001.
- Triola, M. M. and M. V. Pusic (2012). "The education data warehouse: a transformative tool for health education research." J Grad Med Educ **4**(1): 113-115.